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The equations of conservation of mass and momentum are considered for a fluid disper- 

sing medium with suspended particles (the dispersible phase) along an arbitrary discon- 

tinuity surface of a disperse system. Conditions binding the velocity, pressure and con- 

centration jumps are derived, and a model of surface tension at such surface is suggested, 
The coefficient of surface tension is dependent on the interrelation between the densities 

of phases, size of the dispersed phase particles, as well as on other parameters. 
The problem of stability of the horizontal surface of a concentration discontinuity is 

solved. It is shown that, when a suspended layer is above the discontinuity surface, this 
surface is stable with respect to perturbations of sufficiently small wave length. The 

critical wave length, which defines the limit conditions of the onset of piston type fluid- 
ization, substantially depends on the effective surface tension. The upper free surface 
of the suspended layer remains, as expected, stable relative to perturbations of any wave 
length. The obtained results are in agreement with available experimental data. 

A number of problems of mechanics of disperse systems reduce to the investigation 
of discontinuity surfaces. One of the most important among these is the determination 

of conditions for the occurrence of piston type fluidization which disrupts in the system 
the regular pattern of technological processes fl. 21. The piston mode implies a sharp 
disruption of the suspended layer homogeneity, and can only be observed in sufficiently 
narrow tubes. It is characterized by a vertical stratification of a two-phase system into 
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layers containing either the two-phase mixture or the homogeneous dispersing medium, 
thus resulting in a multiple-sandwich-like structure of the whole system. It is natural 
to expect that the problem of existence of the piston mode can be reduced to the ana- 

lisis of stability of the discontinuity surface. 
Conditions at the discontinuity surface in a disperse system were, apparently, first con- 

sidered in [3, 41. An attempt at solving the problem of the discontinuity surface stability 

made by Rice and Wilhelm [S] led them to the conclusion that there was complete insta- 

bility at the discontinuity surface in the case of the mixture lying above a homogeneous 
dispersing medium. The discrepancy between experimental data and the conclusion 

reached by these authors results from the use of a crude model for the suspended layer 

and for the discontinuity surface. The same model was later used by Murray [6] for prov- 

ing the stability of the upper free surface of a suspended layer. The main shortcoming 
of these investigations was the neglect of surface tension. 

The existence of surface tension on a surface of discontinuity in a disperse system was 
itself a subject of controversy fl., 21. As far as the writers are aware, neither the support- 

ers, nor the opponents of this hypothesis had given any substantiated reasons for their 
respective views, if one disregards references to the similarity of a number of phenomena 
in a suspended layer and in a homogeneous fluid p, ‘I]. There had even been an attempt 

at experimental determination of the surface tension coefficient fl]. 
In this paper the discontinuity surface stability in a suspended layer is considered on 

the basis of strict initial conditions obtaining at this surface including, in particular. a 
certain model of surface tension. 

1. Condition1 at the rurfroe of diroontlnufty. Model of turfroe 
ten8ion. As the initial model of the disperse system we take a binary medium con- 
sisting of two interpenetrating and interacting continuous media. For simplicity, we 
assume the two media to be perfect fluids, i.e. we shall neglect stress deviators in both 

of these. The equations of conservation of momentum and mass of the dispersing medium 
and of the dispersed phase may then be written as 

d,E[-g +(vv)]v= -~P1fk4-f 

4P y& I +(wv)]w= --P2+G%-t-f 

a& 
v(EV) = 0, at -; $- + v (pw) = 0, &+p=l 

(1.1) 

Here v, d,, pt and w, d,, pz are, respectively, the velocities, densities, and pressures 
of the dispersing medium and of the dispersed phase, p is the volume concentration of 

the dispersed phase (E = 1 --p is the system porosity). f is the force of interaction 

between the dispersing medium and the dispersed phase, and g is the acceleration due 
to the external field forces. 

We represent the interaction force f in the form 

f = - pvp, - PUF (u,,P>, u=w-v (I.23 

where the first term corresponds to the force acting on the particles of the dispersed 

phase caused by pressure gradient in the dispersing medium, and the second term - 
to the generally nonlinear resistence force acting on the particles during their motion 
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relative to the dispersing medium. Both forces relate to a unit volume of the mixture. 
Expressing force f in the form (1.2) implies the taking into account its main compo- 

nents only, while neglecting the effects of acceleration in the relative motion of parti- 

cles (the effect of apparent additional mass and increased resistance due to unsteady flow 

past the particles). This is fully justified,e. g. in the case of particles of considerably 
greater density than that of the dispersing medium, or of motion whose frequency is small 

in comparison with the reciprocal of the particle velocity relaxation time in the stream. 

Let us now assume that within the volume of a disperse system there is a certain dis- 

continuity surface on both sides of which the concentration of particles is different. It 
is natural to assume that this concentration jump will be accompanied by discontinuities 
of other parameters. 

Such surface may separate regions containing particles of one kind and, in particular, 
a disperse system from the stream of a homogeneous dispersing medium. It can also 

serve as the interface of regions containing particles of different kinds, which is charac- 
teristic, for example, of problems related to the separation of particles in a stream. 

The discontinuity surface is clearly an idealized concept of an actual transition layer 

of thickness 2A in which parameters of the disperse system vary much more abruptly 
than in the regions on both of its sides. Clearly, the order of magnitude of A is the same 
as that of the mean distance between particles in the neighborhood of that layer.How- 

ever, the disperse system model defined by the continuity equations (1.1) is, strictly 
speaking, valid for investigating processes whose characteristic linear scale is consider- 
ably greater than the indicated distance. Hence, in the framework of this model we can 

set A tending to zero, and talk of a surface of discontinuity. 
We introduce a system of orthogonal coordinates z, y, z attached to a certain element 

of plane z = 0 of the discontinuity surface S, and denote the values in regions z > 0 
and z < 0 by superscripts plus and minus, respectively. 

Integrating the mass conservation equation (1.1) with respect to z from - A to + A 
and decreasing A to zero, we obtain for the values on the two sides of the surface z = 0 

the following relationships : 

w*>+ = @J-9 b%)’ = (P%)’ (1.3) 

which represent the conditions of continuity of the streams of the fluid and particles 

across surface S. 
To obtain conditions for the tangential velocity components, we integrate in a simi- 

lar manner the IC- and y- components of the momentum conservation equations (1.1). 
For this we first transform the left-hand sides of these with the aid of the equation of 

mass conservation as follows : 

e [& + (vv)] v = & (EV) + V (ET,), p [& + (WV) ] w = &(Pw) + v (P’%) 

‘G = II uiuj 111 Tw = II wiwi IL t,i = I, y, z (l-4) 

Using transformation (1.4). from the z- and y-components of the momentum conserva- 
tion equation (1.1) we obtain 

(Et&&)+ = (eW,)-, (&U&)f = (Et+/U,)- 

(pw,w,)’ = (PwZwZ)-, (Pw$&)+ = (PWJWJ (1.5) 
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Relationships (1.3) and (1.5) yield 

V + - vx-, CC- vy+ = VU.-, +_ - %? - % I WY +=w- II WV 

which represent the conditions of continuity of the tangential velocity components at 

surface S. 
From the z-component of the equation of momentum conservation of the dispersing 

medium we similarly obtain 

l/&I [(vz2)- - (vr2>+l = PI+ - Pl- (1.7) 
It is more convenient to consider the sum of the z-components of the momentum con- 

servation equation of the dispersed phase and of that of the dispersing medium, rather 

than the z-component of the momentum conservation equation of the dispersed phase. 

Then, using again transformation (1.4). we obtain 

d1 N+)- - (ev,2)+1 + d, I(PW,2)-- - (pw,“)+l = PI+ - p1- + p+z - pz- VI 

The relationships (1.7) and (1.8) obviously represent, respectively, the conditions of 
equilibrium of normal stresses in the dispersing medium and of total normal stresses of 

the whole system along surface S. The equation of equilibrium of the total tangential 
stresses directly follows from relationships (1.5). These, together with condition (1.8). 
may be considered as the conditions of the density tensor continuity for the total stream 

of momentum lI at surface S 

n = (PI + ~2) I+ 4e% + WG, I = II 4ij II wo 
We note thar condition (1.7) may, also, be derived directly from the Bernoulli integral 

for the flow of liquid through a lattice of particles. However, in the derivation of (1. ‘7) 
the conditions necessary for the existence of the Bernoulli integral were not used. 

We would emphasize that relative velocities appear in the conditions derived above 
for the discontinuity surface, and that, generally, the normal velocity components are 

not necessarily zero, in other words, a migration of particles through the discontinuity 
surface is possible. However, in a number of cases, for example, when S is the boundary 

between a disperse system and a homogeneous dispersing medium, such migration of 
particles is not possible, since from the second of conditions (1.3) follows that wz- = 0 

when p+ = 0. 

Only a plane element of the discontinuity surface was considered above. Let us now 
see how condition (1.8) is to be altered in the case of total normal stresses at a curvi- 
linear interface z = c(t, 5, y). For this we will consider the work 6A required for the 

virtual dislocation ?JC of this interface. The work &4 is, obviously, the sum of the 
work expended on changing the volume of the disperse system and of that of changing the 

area 6s of the discontinuity surface S. 
Then 

8A = 1 ipI+ -b pz+ - pa- - pz- + 4 W,2)- - (@)+I + 

- (pw:)‘]} St dS + a6S (1.10) 

where a is the energy required for a unit increase of the discontinuity surface area. 
The reasoning which follows is exactly the same as that applicable to the interface 

of fwo monophase fluids (see, e. g. [8]). As the result we obtairi for the total normal 
stresses 
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Pl+- Pl- i- PST - Pz- -IT 4 [~wz2)‘ - (euz2)+l + 4 [(pqy - (pw,a)+] - 

- a (I?,-l + R,+) = 0 (1.11) 
where R, and Rs are the. principal radii of curvature of the discontinuity surface. 

It will be seen from (1.11) that in the case of a curvilinear surface the condition for 

the total normal stresses differs from the corresponding condition (1. 8). applicable to a 
plane surface, by a supplementary term which is due to the surface curvature and normal 

translation of particles. 

Obviously, the conditions for total tangential stresses and for normal tensions in the 
fluid, as well as those for the continuity of streams of fluid and particles remain unchanged, 

hence, conditions (1.3). (1.6) and (1.7) are valid for a curvilinear discontinuity surface. 
Relationships (1.3), (1.6). (1.7) and (1.11) represent the boundary conditions imposed 

on the solution of the system of Eqs. (1.1) at the discontinuity surface z = 5 (t, 5, y). 
Let us now consider parameter a, appearing in condition (1.11) and representing the 

coefficient of effective surface tension at the discontinuity surface, as the energy required 

for a unit increase of the discontinuity surface area, as defined in formula (1.10). For 

this we revert to the 2A thick transition layer mentioned above, and in which the para- 
meters of motion in the system are subject to abrupt variations. An increase of the dis- 

continuity surface, obviously, indicates the migration of a definite number of particles 
from the depth of the disperse system into this transition layer. The work expended on 

pushing a single particle from the plus region to the center of such layer is 

A+ = ty )3+* dz = - q (Pl' - Pl-7 (1.12) 

Moving a particle from the minus region to the center of the transition layer necessi- 
tates, similarly, the work 

A-= lim 3 o-$&& = $(pl+-PI-) 
A-0 -A 

(1.13) 

where 8+ and 8- are the volumes of particles in the plus and minus regions, respec- 
tively. 

By definition 
a = Ai-Lv-:- _j_ A-N_ (1.14) 

where N+ and N- are the numbers of particles which, owing to the unit increase of 
the discontinuity surface area, reach it from the plus and minus regions, respectively. 

Values N+ and N- are readily expressed in terms of volume and concentration 

of particles 
N- = ($l” (1.15) 

Now, from (1.12) - (1 15) we finally obtain 

a = 1/2 [ (p*h@h)- - (p%~‘h)+] (pl* - pl-) (1.16) 

Thus the coefficient of surface tension is shown to be proportional to the pressure jump 
at the discontinuity surface of a disperse system. 

With the use of condition (1.7) a can, also. be presented in the form 

a = l/&t [(p%(@)- - @‘NY/~)+] [(V,a)- - (U,‘)+] (1.17) 

It can be seen from (1.17) that the coefficient of surface tension reaches its maximum 
when the discontinuity surface is the interface of a disperse system (e. g. a suspended 
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layer) and a homogeneous dispersing medium. To avoid ambiguity, let us assume that 

the discontinuity surface is horizontal. and relate the minus superscript to the disperse 

system, which is assumed homogeneous. Then, taking into consideration the first of con- 

ditions (1.3). we obtain p+ = 0, p- =p, A=&, v,+ = u, VL-=e’U 

where U is the velocity of the ascending stream of the dispersing medium. In this case 

the coefficient of surface tension will be 

a = 1/4d,p’1~~‘la (8-z _ 1) TJ2 (1.18) 

To find the dependence of the surface tension coefficient on the physical parameters 

of the dispersing medium and of particles of the dispersed phase we use the empirical 
formula proposed in PO] which it is convenient to present in the form 

2 v P 
* = -5 -i- 1+0.0955 Jf/p ’ 

aa3g p =v2 &?!4* d =d! (1.19) 

where v is the kinematic viscosity of the dispersing medium, a. is the radius of the dis- 

persed phase particles (particles are assumed to be spherical). This dependence corre- 
sponds. also, to the known emperical formulas of Richardson and Zaki [lOI. 

From (1.18) and (1.19) follows that for p < 1 (practically for fi < 1) the coefficient 

of surface tension is U =: (~.(l%&(i-/- &)(I -~f/'8"~/'-2(& -&)2@gz (1.20) 

i. e. it is inversely proportional to the square of the fluid dynamic viscosity, and directed 
proportional to the square of the difference bettieen the particle and fluid densities and 

to the fifth power of the particle size. For p > 1 (practically for fi 2 104) 

U-2.2 (1f~)(1-_)'.IJ~"'+(d~-d~)a?g (1.21) 

i.e. in this case the surface tension coefficient is proportional to the difference of den- 

sities of particles and fluid and to the square of particle size, while being independent 

of the fluid viscosity. 
Thus, depending on the physical parameters of the disperse system, the coefficient of 

surface tension can vary between very wide limits. 

Let us consider a few typical examples. We shall determine the surface tension coef- 
ficient at the horizontal free surface of a homogeneous layer of porosity E = 0.5 of par- 

ticles of a catalyst of density d2 : 3 s/cm.3 and radius 0. OS and 1 mm fluidized by 

water (dl = Ig/cmg, v = 0.~1 CI,:~/S) and air (d, = 0.0012 g/ems, v = 0.15 cm*/s), 

With use of formulas (1.20) and (1.21) we obtain: 

for fluidization by water 

U = 0.041 cm/s, cc = 6 Y 10-6erg/cmsia = 0.05 mm) 

U = 4.6 cm/s., a = 1.5erg/crni (a -= I mm) 

for fluidization by air 

U = 3.2 cm/s, cc = 4.5 x IO-berg/cma(a = 0.05mm) 

u = 190 cm js , a = 3.5erg/cnja (a = 1 mm) 

These values of a prove the groundlessness of the controversy over the existence or 

otherwise of surface tension in a suspended layer. In fact. this coefficient is negligibly 
small in the case of minute particles. and appreciable in that of large ones (for compa- 
rison we recall that at the water-air interface a = 72 erg/cma). 
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2. The atrbility of ditcontinuity in a 8urpended lryer. Let us 
investigate the stability of the surface of discontinuity of the solid phase concentration 

in a suspended layer for the case, most important in practice, in which a horizontal dis- 
continuity surface separates the region of a homogeneous suspended layer from that con- 

taining a homogeneous dispersing medium. with the homogeneous fluid stream normal 

to the discontinuity surface. 

This comprises the following two kinds of the discontinuity surface : 
1) the stream of fluid is directed toward the suspended layer lying above the dis- 

persing medium (e. g. the upper surface of fluid in the piston mode); 
2) the stream of fluid is directed toward the homogeneous dispersing medium lying 

above a suspended layer (e. g. the upper free surface of a homogeneous suspended layer, 

or the lower surface of the fluid interlayer in the piston mode of fluidization). 
We shall assume for simplicity that the homogeneom dispersing medium and the sus- 

pended layer occupy half-spaces, and limit our analysis to the case of linear dependence 
on u of the resistance to the relative motion of particles. Function F(u, E) in (1. ;?) 

assumes then the form [9, lo] 

F (u, F) = K (p) +, 
2 UJ dz - dl 

ro=Tj--y- d, (2.1) 

where T is the relaxation time of particle velocity (for spherical particles z = TV). 

Let plane z = 0 in an orthogonal system of coordinates 5, y, z be the unperturbed 

discontinuity surface, and let the homogeneous dispersing medium and the suspended 

layer occupy, respectively, regions z > 0 and z < 0. As previously, we denote all 

values in regions z > 0 and z < 0 by superscripts plus and minus, respectively. 
Equations (1.1) with (1. S) and (2.1) taken into account admit the following simple 

solution : 

vxO+ = vvo+ = 0, u,=+ = u = - zg (&O--)2 - . 
z K (p”-) ’ 

pa+ = 1 -&O+ = 0 (2.2) 

u,O- = v,,o- = 0, v,o-= u/r, w,o- = q,o- = wzo- = 0, p”- = 1 -lY- = const 

Pl 
CJt 

= 4gzz + PIN+, PI’- = id, + (4 - 4) ~“-1 g,z -t no- 

PZ 
o- = Pro- = ho+ - Pm-) -++ 7 Plot -plo-=+d,l;‘~+-l 

I 

which at the discontinuity surface satisfies conditions (1.3) and (1.6) - (1.Q and cor- 
responds to a homogeneous stream of fluid (region z > 0) and a stationary homogene- 

ous region of suspended particles (region I < 0)‘. 
In the expressions (2.2) U is the velocity of the stabilized homogeneous flow of fluid 

along the z-axis (rate of filtration through a suspended layer of porosity EO-), and pro+ 

and PIO-, PZO- are the pressures at the discontinuity surface for z + + 0 and z --f - 0, 
respectively. Any two of the three parameters U, e”-, ‘C and, obviously, the densities 

of the fluid and of the solid phase are assumed to be known. 
We note that for the chosen orientation of the z-axis. g, = + g and u < 0 cor- 

respond toadiscontinuity surface of the first kind, and gz = - g and u > 0 to that 
of the second kind. 

Let us now consider small perturbations of the discontinuity surface 

z = Us, Y? 4 

together with related perturbations of the stationary solution (2.2). i. e. we set 
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q (T Y, 2, 0 = b(z) + Q’(ZT Y7 z* 0 (2.3) 

where q is meant to denote the velocity and pressure components at the two sides of the 

discontinuity surface. For simplicity it is also assumed that the solid phase concentration 
is not subject to perturbations, i.e. that perturbations of the discontinuity surface do not 
affect the homogeneity of the suspended layer ; this is in complete agreement with ex- 

perimental data. 

Taking into account the unperturbed solution (2.2). we substitute expressions (2.3) 

into the Eqs. (1.1) and linearize these with respect to perturbations. In the following, 

all primes denoting perturbations will be omitted, and, since the solid phase remains 

unperturbed, all superscripts at p”- and a” will be discarded, i.e. parameters p and 

E will be taken as the unperturbed values of concentration of the solid phase and of the 

suspended layer porosity, respectively. 

Thus for small perturbations we obtain equations 

(2 + u $) v+ = - 4 vpl+, ,yv+ = 0, d = ds;dl (2.9 

( .L+KL)f=_~vpl-+~ “;” ( vu-=0 

aw- 
Pat= -~v(PP;+p2-)_~ w-;v- ( vw-=o (2.5) 

In the case of perturbations the boundary conditions (1.3). (1.6). (1. ‘7) and (1.11) must 
be set at the perturbed discontinuity surface z = 6 (z, y, t). The corresponding con- 

ditions related to the unperturbed discontinuity surface z = 0 are of the form 

x - -=w,, 
at 

v,+=ev,-+p+ 
u at 

VX =vx-+p,,,, v,‘=v;+&~ u; >i -$- - 1 VZf - 2&) = -& (PI+ - Pl') - w?,5 

u(~-1)"(v~-~)=~P,-+~(~+~~ 

We follow the conventional method of expanding perturbations into spectrum, and 

analyze the elementary perturbations 

q’ = Q exp (- iot + hz + ik.g + ik,y), Imk,=Imk,=O (2.7) 
Here q’ is meant to denote velocity and pressure perturbations on the two sides of the 

discontinuity surface, as well as the perturbations of this surface itself (in the latter case 
h = 0). A sufficient condition for the instability of the considered discontinuity surface 

is the presence in the spectrum (2.7) of terms containing Im o > 0; this condition 

is also necessary, since system (2.7) is complete, i. e. when Im o < 0, the discontinu- 
ity surface is stable. 

For the amplitudes of velocity component perturbations along the T - and y-axes we 

introduce transformation 

rc,Qx + k,Q, = kQ, k = (kxz + k,2)‘~~ (2.8) 
With the use of (2.8) the problem is reduced to the analysis of two-dimensional 
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perturbations (analog)l with the theorem of Squire). 

Taking into aCCount transformation f&8), we substitute (2.7) into Eqs. (‘2.4) and obtain 

for the perturbation amplitudes in the region of the dispersing medium the following sys- 
tem of equations: 

(Uh, - 6‘Qf) V,’ = - -$ I>rer jtin - io) v+ = - J$ ff2+* 
(?.:I) 

>,t-,r _t jj${“+ -‘I &,f 

The roots of the characteristic equation of system (8.9) are 

A,+ = - ,‘s, a,+ = + k, ?bn+ = idi-” (2.1U) 

Solutions corresponding to the root hs* must be discarded, since they do not attenuate 
at @finity (for z -+ oaf* It is not difficult to see that the sotutions corresponding to rook 

hst are attenuated at infinity only for 1 m (1) < 0, U < 0 , or for 1 m w > 0, li ,: 2 0 

Hence in the case of a discontinuity surface of the first kind (U < 0) these solutions 
can also be discarded as being obviously stable. Solutions corresponding to the root h,+ 

will, therefore, be taken into consideration only for discontinuity surfaces of the second 

kind (U > 0). 
The nontrivial solutions of system (2.9) considered in the following can be written as 

V,’ = A, V’ = - iA, P,+ = - dl (U + iwk-‘) A (h = h,‘) 

jfi--jq** 
L , Vf= -iB**, pi? = 0 (A = ha*) (2.H) 

Here A and @‘* are arbitrary constants, and the asterisks in the superscript denote 

that the constant does not vanish only in the case of a discontinuity surface of the second 

kind. 
For the amplitude of perturbations in the region of a suspended layer we obtain from 

(2.5) the following system af equations : 

( 
w,--.v- -+iio)V;= --&P,---pa&s ~ 2 

( -g,-i+-= - _$ pl- _ pq@ w-t; v- 

- iopW,- = - -.$ @PI” + p%-) + .Jfz$ ?Y-x+sl 

- iopw- = -+~&- +. p2-> f * “-y F- 

hV,‘+ ikV-= 0, hW,‘+ ikW” = 0 (2.12) 

The roots of the characteristic equation of system (2.12) are 

?v;,s= -I& 3t3,e = -I- k (2.U) 

hs+ = io + -i p6g, @)“[I -(I + ioJ.$yq] 

- The solutions corresponding to roots hl, a must be discarded, since they do not atte- 

nuate at infinity (_z --f - ~3). tit us now consider the root hs- and determine the 

s&n of its real part. It can be shown that (2.14) 

Re ha- = 
i+a u 

x = -ag - 8% 
I 

From (2.14) follows that perturbations which are either intensified witti time(lm W> 
XI) or are neutral @m w = 0) attenuate at infinity (Re As- > 0) for I/‘ < 0 only, 
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i. e. in the case of a discontinuity surface of the first kind. Hence, solutions correspond- 
ing to root hs- should be taken into consideration only in this case ; for a discontinuity 

surface of the second kind they must be discarded as either attenuating at infinity or a 
fortiori stable. 

The nontrivial solutions of system (2.12) considered below may be written in the form 

v,- = c, V- = iC, W,- = D, We= iD 

Pz-= -$ -iio+%k-sg z-!&jC+%(iw+ -.?L?)D 
1+a u 

(h = h&) 

V,- = E*, V- = ih6-km1E*, P,- = P,- = 0 

w,-= 1 +-&--(io-&,-$ 
I )I 

E* 

1 ++;j”a_h+ +E* 
I II (2.15) 

(h = As--) 

Here c, D and E* are arbitrary constants, while the asterisk in the superscript denotes 

the constant which ‘is not zero only in the case of a discontinuity surface of the first kind. 

Substituting the spectral expansion (2.7) into the condition (2.6) at the discontinuity 

surface, and using transformations (2.8) and solutions (2.11) and (2.15). we obtain for 
the constants A, B* * , c, D and E* and for the amplitude of perturbations of the dis- 

continuity surface 2 the' following system of equations : 

(2.16) D+[l + -.-&+(io-h,-+)]E*+ioZ=O 

A+B**-EC-eE*+iopZ=O, A+B** I-C+ *E* +p+kZ=O 

i 
ior~kjA-I-C’j~-lI)kB**‘jiw-ak.Lpsg~~jI:- 

- psg, $- D + [ ioU (-$ - 1,) + psg,] kZ = 0 

p _$ kzl + p $ kR** -j- ./iw - g k + zg, -$I C - 

-[io(l+s) t5g~~]Dii:iO,O~k+~k9)Z=O 

We thus have a homogeneous system of five equations in five unknowns (we remind 

that in each case only one of the values with an asterisk in the superscript differs from 
zero). The condition of existence of nontrivial solutions of system (2.X? ) yields the 
equation for 0). The looked for condition of stability is derived from the analysis of the 

sign of the imaginary part of the roots of this equation. 
Let us consider separately the two variants of the discontinuity surface. 
Discontinuity surface of the first kind. When the suspended layer lies 

over a homogeneous dispersing medium, g, - + g, U < 0 and B** = 0. The 
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characteristic equation of system (‘2.16) is a fifth power algebraic equation in o . The 
analysis of its roots is considerably simplified if one takes into consideration that the 

left-hand side of this equation can be written as the product of second and third order 

polynomials. The characteristic equation can be written as 

n, (9) I& (a) = 0, Q=-ii0 (2.17) 

II3 (9) = a&3 + a,Q’ + a$ + a3 

a, = 2 + (1 + E) 3, a, = - + a,k - $- (2 + ps) sg 

a3 = 
a&sg 

--hq-?-&- 
drU 

lJ2k + 1) - + USk3 + q psgUk2 + p&g2 + 

It is now clear from (2.13) that the roots of polynomial n, (Q) reduce the difference 

As- - k to zero. But, then, it follows fIom (2.16) and (2.15) that, when none of these 

roots is a root of polynomial 11, (a), the corresponding solutions of system (2.16) are 
such that all perturbations are of zero amplitude. Hence it is sufficient to consider only 

the roots of polynomial IIs (Q). 

The definition of 52 implies a negative Re 9 as the condition of stability. Applying 

the Hurwitz criterion to polynomial &, (St), we obtain the following necessary and 

sufficient conditions for stability : 

a0 > 07 w% - aoa, > 0, a3 > 0 (2.18) 

It will be seen from (2.17) that the first of these conditions is independent of the wave 

number Ic and is always satisfied. The second condition may be written as 

T;-+“‘+ ‘fr;,+ 
e- 

l.% + (1 + ps) sg > 0 

Clearly, this condition is satisfied for any 4; (we recall that by definition k > 0). 
The remaining third condition is conveniently presented in the dimensionless form 

A3 -j- (2.19) 

Hence the discontinuity surface is stable for all wave numbers satisfying the inequality 

lLz)k, = $- (Z.3) 
* 

where A, is the only one positive root of the polynomial at the left-hand side of inequa- 
lity (2.19). When L: c< /c.+ , the discontinuity is unstable. 

Discontinuity surface of the second kind. In this case the homogene- 
ous dispersing medium lies above the suspended layer, and g, = - g, I’ I> 0 and 

E* = U. The characteristic equation of system (2.16) may be-written as _(2.21) 
(Q i- - C! k) ’ 1 + ’ ; ’ 

l\ 
__+y ,- sg-cQ + a_ k3 + -& Uzk2 +$- sgk)- 0, 

(,j=--ii0 
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The root 52 = Uk corresponds to ha+= -- k and, as in the case of a discontinuity 
surface of the first kind, the amplitudes of all perturbations are zero. The other two roots 

of the characteristic equation have, obviously, negative real parts for any k > 0. 
Thus the discontinuity surface considered here is always stable with perturbations of 

any frequency, and this agrees with experimental data. Since this result, as evinced by 
(2.21), is independent of the value of surface tension, it is not surprising that Murray 163 

had arrived at the correct conclusion in splte of incorrectly stipulated boundary condi- 
tions at the discontinuity surface. 

In conclusion we would note that the results obtained here can be extended by a simi- 

lar method to the case of nonlinear resistance of particles and of a suspended layer of 
finite thickness. 
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